Series Fourier - ANALISIS DE FOURIER

INFORMACION
RESEÑA HISTORICA
CONCEPTO
TRABAJO
PROPIEDADES BASICAS
TRANSFORMADA DE FOURIER
TRANSFORMADA BASICA
TEOREMA DE INVERSION
EJEMPLOS
ANALISIS DE FOURIER
DESCRIPCION DEL ANALISIS
INTERPRETACION GEOMETRICA
FOURIER FORMA COMPLEJA
El ALGORITMO FFT (FAST FOURIER TRANSFORM)
USO EN LAS INGENIERIAS
LIBRO DE VISITAS



 
El análisis de Fourier se considera difícil por el nivel de las matemáticas necesarias para explicarlo. En este programa, se usan medios gráficos para ilustrar sus aspectos fundamentales, es decir, la aproximación sucesiva mediante la suma de armónicos, senos y cosenos, a una función dada, por ejemplo, un pulso cuadrado, o en forma de diente de sierra, etc. La suposición de ondas armónicas continuas que hemos usado en este capítulo, no es realista, ya que todos los movimientos ondulatorios están limitados tanto espacial como temporalmente. Es posible, usando el análisis de Fourier y la transformada de Fourier describir formas de ondas más complejas como las que producen los instrumentos musicales. El análisis de Fourier surgió a partir del intento de su autor por hallar la solución a un problema práctico de conducción del calor en un anillo de hierro. Desde el punto de vista matemático, se obtiene una función discontinua a partir de la combinación de funciones continuas. Esta fue la atrevida tesis defendida por Fourier ante la Academia Francesa, que motivó severas objeciones de los matemáticos más importantes de su época como Lagrange, Laplace, etc.
Hoy habia 9 visitantes (10 clics a subpáginas) ¡Aqui en esta página!
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis